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Maldacena limit. We find a family of classical solutions corresponding to Giant Magnons

with two independent angular momenta on S5. These solutions are related via Pohlmeyer’s

reduction procedure to the charged solitons of the Complex sine-Gordon equation. The

corresponding string states are dual to BPS boundstates of many magnons in the spin-

chain description of planar N = 4 SUSY Yang-Mills. The exact dispersion relation for

these states is obtained from a purely classical calculation in string theory.
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The AdS/CFT correspondence predicts that the spectrum of operator dimensions in

planar N = 4 SUSY Yang-Mills and the spectrum of a free string on AdS5 × S5 are the

same. Verifying this prediction by computing the full spectrum is an important unsolved

problem. For small ’t Hooft coupling, λ¿ 1, the perturbative dimensions of gauge theory

operators can be calculated by diagonalising an integrable spin chain [1, 2]. For λÀ 1, the

string sigma-model, which is also classically integrable [3], becomes weakly coupled. The

full spectrum certainly depends in a complicated way on the ’t Hooft coupling. However

the appearance of integrability on both sides of the correspondence strongly suggests that

the problem is solvable and there has been significant progress in formulating exact Bethe

ansatz equations which hold for all values of the coupling [4 – 8].

In recent work, Hofman and Maldacena (HM) [9] have identified a particular limit

where the problem of determining the spectrum simplifies considerably. In this limit we

restrict our attention to Yang-Mills operators with large U(1) R-charge J1, which therefore

also have large scaling dimensions ∆ ≥ J1. More precisely, HM consider a limit where ∆

and J1 become infinite with the difference ∆ − J1 and the ’t Hooft coupling λ held fixed

(see also [10]). In this limit both the gauge theory spin chain and the dual string effectively

become infinitely long. The spectrum can then be analysed in terms of asymptotic states

and their scattering. On both sides of the correspondence the limiting theory is charac-

terised by a centrally-extended SU(2|2) × SU(2|2) supergroup which strongly constrains

the spectrum and S-matrix [8].

The basic asymptotic state carries a conserved momentum p, and lies in a short multi-

plet of supersymmetry. States in this multiplet have different polarisations corresponding

to transverse fluctuations of the dual string in different directions in AdS5 × S5. The BPS

condition essentially determines the dispersion relation for all these states to be [4, 6 – 8]

(see also [11]),

∆− J1 =

√
1 +

λ

π2
sin2

(p
2

)
. (1)

In the spin chain description, this multiplet corresponds to an elementary excitation of the

ferromagnetic vacuum known as a magnon. The dual state in semiclassical string theory

was identified in [9]. It corresponds to a localised classical soliton which propagates on

an infinite string moving on an R × S2 subspace of AdS5 × S5. The conserved magnon

momentum p corresponds to a certain geometrical angle in the target space explaining

the periodic momentum dependence appearing in (1). Following [9], we will refer to this

classical string configuration as a Giant Magnon.

In addition to the elementary magnon, the asymptotic spectrum of the spin chain also

contains an infinite tower of boundstates [14]. Magnons with polarisations in an SU(2)

subsector carry a second conserved U(1) R-charge, denoted J2, and form boundstates with

the exact dispersion relation,

∆− J1 =

√
J2

2 +
λ

π2
sin2

(p
2

)
. (2)

The elementary magnon in this subsector has charge J2 = 1 and states with J2 = Q

correspond to Q-magnon boundstates. These states should exist for all integer values of
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J2 and for all values of the ’t Hooft coupling [14]. In particular we are free to consider

states where J2 ∼
√
λ. For such states the dispersion relation (2) has the appropriate

scaling for a classical string carrying a second large classical angular momentum J2. In

this Letter we will identify the corresponding classical solutions of the worldsheet theory

and determine some of their properties. In particular, we will reproduce the exact BPS

dispersion relation (2) from a purely classical calculation in string theory. In the case of

boundstates with momentum p = π, the relevant configuration was already obtained in [14]

as a limit of the two-spin folded string solution of [15, 16]. Here we will obtain the general

solution for arbitrary momentum p and R-charge J2. Both the p = π configuration of [14]

and the original single-charge Giant Magnon of HM will emerge as special cases. We also

briefly discuss semiclassical quantisation of these objects which simply has the effect of

restricting the R-charge J2 to integer values.

The minimal string solutions carrying two independent angular momenta, J1 and J2

correspond to strings moving on an R×S3 subspace of AdS5×S5. In static gauge, the string

equations of motion are essentially those of a bosonic O(4) σ-model supplemented by the

Virasoro constraints. An efficient way to find the relevant classical solutions exploits the

equivalence of this system to the Complex sine-Gordon (CsG) equation discovered many

years ago by Pohlmeyer [12]1. The CsG equation is completely integrable and has a family

of soliton solutions [17 – 19]. In addition to a conserved momentum the soliton also carries

an additional conserved charge associated with rotations in an internal space. Each CsG

soliton corresponds to a classical solution for the string. The problem of reconstructing

the corresponding string motion, while still non-trivial, involves solving linear differential

equations only. We construct the two-parameter family of string solutions corresponding

to a single CsG soliton and show that they have all the expected properties of Giant

Magnons. In particular they carry non-zero J2 and obey the BPS dispersion relation (2).

It is quite striking that we obtain the exact BPS formula, for all values of J2, from a

classical calculation. This situation seems to be very analogous to that of BPS-saturated

Julia-Zee dyons in N = 4 SUSY Yang-Mills [20, 21]. These objects also have a classical

BPS mass formula which turns out to be exact. It seems appropriate to call our new

two-charge configurations Dyonic Giant Magnons.

Multi-soliton solutions of the CsG equation are also available in the literature [17 – 19].

In the classical theory these objects undergo factorised scattering with a known time-delay.

This is precisely the information required to calculate the semiclassical approximation to

the S-matrix and we hope to return to this in the near future. The rest of the paper is or-

ganised as follows. We begin by discussing strings on R×S3 in the HM limit and review the

original Giant Magnon solution of [9] in this context. We then explain the classical equiv-

alence of the string equations to the complex sine-Gordon equation. Finally, we construct

the required string solutions from the CsG solitons and determine their properties.

We will begin by focusing on closed bosonic strings moving on an R× S3 subspace of

AdS5 × S5. The worldsheet coordinates are denoted σ ∼ σ + 2π and −∞ < τ <∞ while

1The corresponding reduction of the O(3) sigma model to the ordinary sine-Gordon equation [12] was

discussed in [9] (see also [13]).
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those on the target space are,

X0(σ, τ) , ~X(σ, τ) = (X1, X2, X3, X4) with | ~X |2 = 1 . (3)

We make the static gauge choice X0(σ, τ) = κτ , so that the string energy is given as ∆ =√
λκ. We define a U(1)1×U(1)2 Cartan subgroup of the SU(2)L×SU(2)R isometry group

of the target space under which the complex coordinates Z1 = X1 +iX2 and Z2 = X3 +iX4

have charges (1, 0) and (0, 1) respectively. String states carry the corresponding conserved

Noether charges,

J1 =

√
λ

2π

∫ 2π

0
dσ Im[Z̄1∂τZ1] , (4)

J2 =

√
λ

2π

∫ 2π

0
dσ Im[Z̄2∂τZ2] , (5)

which can be thought of as angular momenta in two orthogonal planes within S 3.

We will now describe the HM limit [9] where one of these angular momenta, say J1,

becomes large while the other, J2, is held fixed. The specific limit we consider is,

J1 →∞ , ∆→∞
∆− J1 = fixed , λ = fixed , J2 = fixed . (6)

The fact that λ is held fixed allows us to interpolate between the regimes of small and large

λ, where perturbative gauge theory and semiclassical string theory respectively are valid.

It is convenient to implement the HM limit for the string by defining the following rescaled

worldsheet coordinates, (x, t) ≡ (κσ, κτ), which are held fixed as κ = ∆/
√
λ→∞. Under

this rescaling, the interval −π ≤ σ ≤ π corresponding to the closed string is mapped to

the real line −∞ ≤ x ≤ ∞ with the point σ = ±π mapped to x = ±∞.

As always, a consistent closed string configurations always involve at least two magnons

with zero total momentum. As explained in [9], magnon momentum is associated with a

certain geometrical angle in the target space. The condition that the total momentum

vanishes (modulo 2π) is then enforced by the closed string boundary condition. However,

after the above rescaling, closed string boundary condition and thus the vanishing of the

total momentum can actually be relaxed. This allows us to focus on a single worldsheet

excitation or magnon carrying non-zero momentum p. This makes sense because the addi-

tional magnon with momentum −p required to make the configuration consistent can be

hidden at the point x =∞.

The conserved charges of the system which remain finite in the HM limit are given as,

∆− J1 =

√
λ

2π

∫ +∞

−∞
dx (1− Im[Z̄1∂tZ1]) , (7)

J2 =

√
λ

2π

∫ ∞

−∞
dx Im[Z̄2∂tZ2] . (8)

It is important to note that these quantities will not necessarily be equal to their counter-

parts (4), (5) computed in the original worldsheet coordinates. In general, the latter may
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include an additional contribution coming from a neighbourhood of the point σ = ±π
which is mapped to x = ∞. As in the above discussion of worldsheet momentum, the

extra contribution reflects the presence of additional magnons at infinity.

The equation of the motion for the target space coordinate ~X(x, t) can be written in

terms of light-cone coordinates x± = (t± x)/2 as

∂+∂− ~X + (∂+
~X · ∂− ~X) ~X = 0 . (9)

A physical string solution must also satisfy the Virasoro constraints. In terms of the

rescaled coordinates these become,

∂+
~X · ∂+

~X = ∂− ~X · ∂− ~X = 1 . (10)

Before discussing the general two-charge case, we will review the simpler situation

where J2 = 0 which leads to the basic Giant Magnon solution of [9]. This corresponds to

restricting our attention to strings which are constrained to lie on an S 2 submanifold of

S3. In terms of the worldsheet fields introduced above, we can implement this by setting

X4(x, t) = 0 or equivalently demanding that Z2(x, t) is real. In this case the complex

worldsheet fields Z1 and Z2 can be written as,

Z1(x, t) = sin θ exp(iϕ) , Z2(x, t) = cos θ , (11)

where θ and ϕ are the polar and azimuthal angles on the two-sphere respectively. In these

coordinates the angular momentum J1 generates shifts of the azimuthal angle ϕ. The

required solution should have infinite energy ∆ and angular momentum J1 with a finite

difference ∆ − J1. Such a configuration can be obtained by considering an open string2

with both endpoints moving on the equator θ = π/2 at the speed of light. The string

theory quantity corresponding to the magnon momentum p is exactly given by the angular

separation ∆ϕ between these two endpoints of the string (see figure 1). The Giant Magnon

solution therefore has the following boundary conditions for Z1 and Z2,

Z1 → exp
(
it± ip

2

)
, Z2 → 0, as x→ ±∞ . (12)

In the following we will show that the unique solution with the required properties

which satisfies (12) is

Z1 =
[
sin
(p

2

)
tanh(Y )− i cos

(p
2

)]
exp(it) , Z2 =

sin
(p

2

)

cosh(Y )
, (13)

where

Y =
x− cos

(p
2

)
t

sin
(p

2

) . (14)

This solution is equivalent to the one given as Eqn (2.16) in [9]. We will rederive it as a

special case of the more general solution presented below. One may check that while the

2Recall that in the HM limit we have relaxed the closed string boundary condition. To obtain a consistent

closed string configuration we should add a second magnon at infinity in the coordinate x. In spacetime

this corresponds to adding a second open string to form a folded closed string.

– 4 –



J
H
E
P
0
9
(
2
0
0
6
)
0
2
4

Figure 1: A Giant Magnon solution. The endpoints of the string move on the equator θ = π/2 at

the speed of light. The magnon momentum is given by p = ∆ϕ, where ∆ϕ is the angular distance

between two endpoints of the string.

energy ∆ and the angular momentum J1 of the solution diverge, the combination ∆− J1

remains finite and is given by,

∆− J1 =

√
λ

π

∣∣∣sin
(p

2

)∣∣∣ (15)

in agreement with the large-λ limit of (1). Moreover the solution (13) carries only one

non-vanishing angular momentum, having J2 = 0.

To solve the string equations of motion (9) in the general case, together with the

Virasoro conditions (10), we will exploit the equivalence of this system with the CsG

equation. Following [12], we will begin by identifying the the SO(4) invariant combinations

of the worldsheet fields ~X and their derivatives. As the first derivatives ∂± ~X are unit

vectors, we can define a real scalar field φ(x, t) via the relation,

cosφ = ∂+
~X · ∂− ~X . (16)

Taking into account the constraint | ~X |2 = 1, we see that there are no other indepen-

dent SO(4) invariant quantities that can be constructed out of the fields and their first

derivatives. At the level of second derivatives we can construct two additional invariants;

u sinφ = ∂2
+
~X · ~K , v sinφ = ∂2

− ~X · ~K , (17)

where the components of vector ~K are given by Ki = εijklXj∂+Xk∂−Xl. The connection

with CsG model arises from the equations of motion for u, v and φ derived in [12]. In fact

the resulting equations imply that u and v are not independent and can be eliminated in

favour of a new field χ(x, t) as,

u = ∂+χ tan

(
φ

2

)
, v = −∂−χ tan

(
φ

2

)
. (18)

The equations of motion for χ and φ can then be written as

∂+∂−φ+ sinφ−
tan2

(
φ
2

)

sinφ
∂+χ∂−χ = 0 , (19)

∂+∂−χ+
1

sinφ
(∂+φ∂−χ+ ∂−φ∂+χ) = 0 . (20)
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In the special case of constant χ they reduce to the usual sine-Gordon equation for

φ(x, t). Finally we can combine the real fields φ and χ to form a complex field ψ =

sin (φ/2) exp(iχ/2), which obeys the equation,

∂+∂−ψ + ψ∗
∂+ψ∂−ψ
1− |ψ|2 + ψ(1 − |ψ|2) = 0 . (21)

Equation (21) is known as the Complex sine-Gordon equation. Like the ordinary

sG equation, it is completely integrable and has localised soliton solutions which undergo

factorised scattering. The CsG equation is invariant under a global rotation of the phase

of the complex field: ψ → exp(iν)ψ, ψ∗ → exp(−iν)ψ∗. In addition to momentum and

energy, CsG solitons carry the corresponding conserved U(1) Noether charge3. The most

general one soliton solution to (21) is given by (see eg [18]),

ψ1-soliton = eiµ
cos(α) exp(i sin(α)T )

cosh(cos(α)(X −X0))
(22)

with

X = cosh(θ)x− sinh(θ)t , T = cosh(θ)t− sinh(θ)x . (23)

The constant phase µ is irrelevant for our purposes as only the derivatives of the field χ

affect the corresponding string solution. The parameter X0 can be absorbed by a constant

translation of the world-sheet coordinate x and we will set it to zero. The two remaining

parameters of the solution are the rapidity θ of the soliton and an additional real number

α which determines the U(1) charge carried by the soliton.

Taking the limit α → 0, the field φ corresponding to the one-soliton solution (22)

reduces to the kink solution of the ordinary sG equation. As it is the only known solution

of the CsG equation with this property, it is the unique candidate for the dyonic Giant

Magnon solution we seek. It remains to reconstruct the corresponding configuration of the

string worldsheet fields ~X (or equivalently Z1 and Z2) corresponding to (22) for general

values of the rapidity θ and rotation parameter α.

In this case we have,

∂+
~X · ∂− ~X = cos(φ) = 1− 2 cos2(α)

cosh2 (cos(α)X)
. (24)

Hence the complex coordinates Z1 and Z2 must both solve the linear equation,

∂2Z

∂t2
− ∂2Z

∂x2
+

[
1− 2 cos2(α)

cosh2 (cos(α)X)

]
Z = 0 (25)

where, as above X = cosh(θ)x− sinh(θ)t. We impose the boundary conditions at x→ ±∞
appropriate for a Giant Magnon with momentum p,

Z1 → exp
(
it± ip

2

)
, (26a)

Z2 → 0 . (26b)

3Note that there is no simple relation between the U(1) charge of the CsG soliton and the string angular

momentum J2.
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As always the two complex fields obey the constraint |Z1|2 + |Z2|2 = 1. We will find unique

solutions of the linear equation (25) obeying these conditions and then, for self-consistency,

check that they correctly reproduce (24).

It is convenient to express the solution of (25) in terms of the boosted coordinates X

and T . In terms of these variables Z = Z[X,T ] obeys,

∂2Z

∂T 2
− ∂2Z

∂X2
+

[
1− 2 cos2(α)

cosh2 (cos(α)X)

]
Z = 0 . (27)

The problem now has the form of a Klein-Gordon equation describing the scattering of a

relativistic particle in one spatial dimension incident on a static potential well. As usual

the general solution of this equation can be written as a linear combination of “stationary

states” of the form,

Zω = Fω(X) exp(iωT ) . (28)

Rescaling the variables according to,

ξ = cos(α)X , f(ξ) = Fω(X) , ε =

√
ω2 − 1

cos(α)
, (29)

we find that the function f(ξ) obeys the equation,

−d
2f

dξ2
− 2

cosh2(ξ)
f = ε2f . (30)

Equation (30) coincides with the time-independent Schrödinger equation for a particle

in (a special case of) the Rosen-Morse potential [23],

V (ξ) =
−2

cosh2(ξ)
. (31)

The exact spectrum of this problem is known (see e.g. [24]). There is a single normalisable

boundstate with energy ε2 = −1 and wavefunction,

f−1(ξ) =
1

cosh(ξ)
(32)

and a continuum of scattering states with ε2 = k2 for k > 0 and wavefunctions,

fk2(ξ) = exp(ikξ) (tanh(ξ)− ik) (33)

with asymptotics,

fk2(ξ)→ exp

(
ikξ ± i δ

2

)
(34)

where the scattering phase-shift is given as δ = 2 tan−1(1/k).

The general solution to the original linear equation (25) can be constructed as a linear

combination of these boundstate and scattering wavefunctions. The particular solutions
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corresponding to the worldsheet fields Z1 and Z2 are singled out by the boundary condi-

tions (26a), (26b). In particular, the boundary condition (26a) can only be matched by a

solution corresponding to a single scattering mode fk2(ξ);

Z1 = c1fk2 (cos(α)X) exp(iωk2T ) (35)

where ωk2 =
√
k2 cos2(α) + 1. We find that (26a) is obeyed provided we set,

k =
sinh(θ)

cos(α)
(36)

which yields the magnon momentum p = δ = 2 tan−1(1/k). The boundary condition (26b)

dictates that Z2 decays at left and right infinity. This is only possible if we identify it with

the solution corresponding to the unique normalisable boundstate of the potential (30),

Z2 = c2f−1(cos(α)X) exp(iω−1T ) (37)

with ω−1 = sin(α). Without loss of generality we can choose the constants c1 and c2 to be

real. The condition |Z1|2 + |Z2|2 = 1 then yields,

c1 = c2 =
1√

1 + k2
. (38)

To summarise the above discussion the resulting string solution is,

Z1 =
1√

1 + k2
(tanh [cos(α)X] − ik) exp(it) ,

Z2 =
1√

1 + k2

1

cosh [cos(α)X]
exp (i sin(α)T ) , (39)

where X, T and k are defined in (23) and (36) above. One may easily check that this

solution, in addition to obeying the string equation of motion (25) and boundary condi-

tions (26a), (26b), obeys the Virasoro constraints and satisfies the self-consistency condi-

tion (24). It also reduces to the Hofman-Maldacena solution (13) in the non-rotating case

α = 0. Setting p = π, we obtain one-half4 of the folded string configuration discussed

in [14].

The solution (39) depends on two parameters: k and α. We can now evaluate the

conserved charges (7) and (8) as a function of these parameters,

∆− J1 =

√
λ

π

1

1 + k2

√
1 + k2 cos2(α)

cos(α)
,

J2 =

√
λ

π

1

1 + k2
tan(α) . (40)

As above the magnon momentum is identified as p = 2 tan−1(1/k). Eliminating k and α

we obtain the dispersion relation,

∆− J1 =

√
J2

2 +
λ

π2
sin2

(p
2

)
, (41)

4See footnote below Eqn (11).

– 8 –



J
H
E
P
0
9
(
2
0
0
6
)
0
2
4

which agrees precisely with the BPS dispersion relation (2) for the magnon boundstates

obtained in [14].

The time dependence of the solution (39) is also of interest. As in the orginal HM

solution the constant phase rotation of Z1 with exponent it ensures that the endpoints of

the string move on an equator of the three-sphere at the speed of light. We can remove

this dependence by changing coordinates from Z1 to Z̃1 = exp(−it)Z1. In the new frame,

the string configuration depends periodically on time through the t-dependence of Z2. The

period, T , for this motion is the time for the solution to come back to itself up to a

translation of the worldsheet coordinate x. From (39) we find,

T = 2π
cosh(θ)

sin(α)
. (42)

As we have a periodic classical solution it is natural to define a corresponding action

variable. A leading-order semiclassical quantization can then be performed by restricting

the action variable to integral values according to the Bohr-Sommerfeld condition. Follow-

ing [9], the action variable I is defined by the equation,

dI =
T
2π

d(∆− J1)|p . (43)

where the subscript p indicates that the differential is taken with fixed p. Using (40), (41)

and (42) we obtain simply dI = dJ2 which is consistent with the identification I = J2.

This is very natural as we expect the angular momentum J2 to be integer valued in the

quantum theory. It is also consistent with the semiclassical quantization of finite-gap

solutions discussed in [25] where the action variables correspond to the filling fractions.

These quantities are simply the number of units of J2 carried by each worldsheet excitation.
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